—— . UNIVERSITY OF MARYLAND

INSTITUTE FOR MOLECULAR PHYSICS

ADIABATIC EXCITATION TRANSFER IN GASES: EFFECTS

ON TRANSPORT

Carl Nyeland and E. A. Mason

" ., N67 1439
;QL , s
PNV (o~ A
GPO PRICE $ ‘ - ,
CFSTI PRICE(S) § IMP-NASA-58
Hard copy (HC) #).00 December 22, 1966

Microfiche (MF) >

X853 July 65




ADIABATIC EXCITATION TRANSFER IN GASES: EFFECTS

ON TRANSPORT

Carl Nyeland* and E. A. Mason
Institute for Molecular Physics, University of Maryland

College Park, Maryland

ABSTRACT

A calculation is made of the contribution to the transport
coefficients from adiabatic excitation transfer in atomic gases.
Atomic nitrogen is chosen as an example, and the necessary poten-
tial curves are determined partly from spectroscopic data and
partly from Heitler-London calculations. Exchange greatly reduces
the rate of diffusion of internal electronic energy, and the
contribution of the 2D and 2P excited states of N to the thermal
conductivity at lO,OOOOK is reduced by a factor of three (from
48% to 16% of the translational thermal conductivity). Reasons

are given to suppose that such behavior is fairly general, and

not restricted to nitrogen.

* On leave during 1966 from Chemistry Laboratory III, University
of Copenhagen, Denmark.




I. INTRODUCTION

The role of electronically excited atoms in affecting
transport processes, especially at high temperatures, has often
been discussed, but no quantitative calculations have been made.
Hirschfelder and Eliason1 made rough calculations of the increase
in the elastic cross section, using Slater orbitals, and suggested
a large effect. Mason, Vanderslice, and Yos2 later suggested
that the resonant exchange of excitation on collision might
have an even larger effect, especially on the thermal conductivity.

The purpose of this paper is to investigate these effects

in more quantitative detail, for reactions of the type
A*+ A = A + A¥*, (D

We first give a precise semiclassical formulation for the
calculation of transport cross sections when both exchange and
elastic scattering are important. This avoids several of the
approximations of ref.2. Numerical calculations for atomic nitro-
gen show that the diffusion of electronically excited atoms is
rather slow, and that the maximum contribution of the electronic
excitation to the thermal conductivity is small (<20%).
Arguments are advanced to show that this result is probably valid
for most systems, not just nitrogen.

If inelastic collisions occur frequently enough to keep the

gas in local equilibrium, the thermal conductivity x isS’%

A= Xtrans + xint =

I3

N Ctrans + pDint Cint ’ (2)



where m is the viscosity, the translational specific heat,

s
trans
p the mass density, Dint the diffusion coefficient for internal

energy, and Eint the specific heat for the internal degrees of
freedom., If the inelastic collisions are too infrequent to

maintain local equilibrium, the heat conduction is lowered.5

If the inelastic collisions are so frequent that the translational

distribution function is perturbed, the heat conduction is also

1owered.6 Since ¢

trans % k/m, Eq.(2) can be written as

4 7 k ?

where k is Boltzmann's constant and Cint is the internal heat
capacity per molecule. From this it follows that the contribution
to the thermal conductivity from the internal degrees of freedom
has importance only where Cint is large. The maximum electronic

/m

. . . . 7
contribution to Cint/k is usually less than unity,’ and ,oDint
is of order unity without excitation exchange. The maximum con-
tribution of electronic excitation to A is thus never very large,

and exchange reduces it by decreasing Dint

II. CROSS SECTIONS

For symmetric exchange reactions like Eq. (1) there exists
a simple approximate relation between the diffusion cross section
QD and the exchange cross section Qex’ An exact statement about
this relation is given in Appendix A, Here we give a simple
physical derivation of the equation, based on the semiclassical

assumption that the nuclei follow trajectories which are



independent of a possible excitation exchange that takes place with
probability Pex‘ The only effect of exchange is to convert the
apparent classical deflection angle from 6 to m- 6, just as in

charge transfer,8 so that

QD QD(without exchange) + QD(with exchange)

o)

i

2m (1-Pex)(1— cos 6)bdb
O (e¢]

r 2m [pex [1-cos(m-6)] bdb, (4)
0

where b is the impact parameter. This expression can be re-

arranged into the form

00 [oe)

Qp = 4m [P__ bdb + Zﬂf(l -2P_ ) (1- cos 6)bdb. (5)
0 0

Here the first term is equal to 2Qex’ and the last term is
generally negligible because Pexkél/z for small impact parameters
(on the average) and cos @ ~ 1 for large impact parameters. When
this is not true the full expressions in Appendix A should be
used, but in such cases exchange is usually not important anyway.
In the following we will therefore use the simple relation,
Qva 2Qex, transforming calculations of diffusion cross sections
into calculations of exchange cross sections,.

In the adiabatic approximation a collision between two
atoms of the same kind but in different electronic states involves
coupling between two potential curves, one for which the molecular

wave function is symmetric (gerade) and one for which it is



antisymmetric (ungerade). If both atoms are in S-states there

is only one possible pair of potential curves, and the calculation
of Qex in terms of the elastic scattering phase shifts is well
known.9 If both atoms are not in S~states, there are possibilities
for a number of pairs of potential curves.10 In the adiabatic
approximation there is no coupling between different pairs of

such potential curves, and a simple average over all pairs can

be used,

(Qex> = 2 b, ™, (5)

where P, is the probability that a collision will follow the n-th
pair of potential curves. The p, are easily calculated from the
statistical weights of the molecular states.

For the present purposes an impact-parameter calculation

of Q should be sufficiently accurate, for which

ex w
Qéi) =27r sin’ ¢, bdb, (6)
(n) (n)
¢y =.%; J[ (rz bz)% rdr, ¢p)
(n) (n)

where v is the relative velocity of collision and mg and @
are the n-th pair of potential curves. It usually happens that
the difference between the two potential curves can be satisfactor-

ily fitted by an exponential,

q)(n) _ cp(n)

g 4 = A eXp(—anr) ) (8)
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where An and o are constants. In this case Firsov's approximation

can be used to evaluate the integrals in Egs.(6) and (7), yielding

(n) _1 (n)| 2
Qex =37 P ’ (9)
where bén) is given by a transcendental equation,

A ﬂb(n) %
n c
hv 2q

n

exp [—anbén)] -1 (10)

Bates and Boyd12 have shown that this simple approximation is

remarkably accurate.

(n)

Thus the calculation of Qex

is simple once the potential

difference is given in the form of the parameters An and - The

(n) 13

energy dependence of QeX is fairly weak and can be expressed as

2
Qeén) = {cin)- cz(n) In v] , (11)

(n)
1

(n)

where c and c2 are constants,

III, THERMAL CONDUCTIVITY AND INTERNAL DIFFUSION

The expression for the diffusion coefficient from the

kinetic theory of gases can be written in the form14

k) 2
o’
where 00
_ Y2
0

in which 72 =;¢v2/2kT and yu is the reduced mass. When exchange

dominates and QD*’ZQeX, Eq. (12) still holds with the replacement




e

2
=«(1,1) _ (n) _ (n) 5 _-¥
mQ = 2ﬂ§pn Qog = 2 =P, Qy v © dvy . (14)
0 P
This integral is easily evaluated when Qein) has the energy

dependence of Eq.(ll).15

The viscosity of a gas with not too many excited atoms
can be taken approximately equal to the viscosity of the ground-

state gas, which is14

1
_ 5 (2mukT)?
LT 2,2

(13)

—(2’ 2)

where Q is the collision integral for viscosity. Combining

the foregoing equations, we obtain

nk 4 5 k 2' Q (n) *
Pn ex
The contribution to Cint from an excited electronic state of
energy ZXE above the ground state is
C. 2
int _ (AE/KT)“ w exp(-AE/KT) (17)

k [1+ w exp(—AE/kTﬂ 2

where w is the ratio of the degeneracy of the excited state to -
that of the ground state.

Abnormalities in the thermal conductivity should be
especially pronounced in systems that have low-lying excited
states. As a numerical example we select atomic nitrogen, since
the results are of some practical interest for their own sake.

The following data are from Herzberg.10 The ground state is 4S,

with an excited 2D state 2.38 eV above and an excited 2P state




3.65 eV above. In collisions between N(4S) and N(2D) the

following (g,u)-pairs of potential curves are possible:

3 5 3 5 3
I i}
Zg,u ’ Zg,u ’ g,u’ g,u’ Ag,u

collisions between N(4S) and N(2P) the first four of these pairs

S
, and Zkg,u . In

are possible. The degeneracies are as shown in Tables I and II.
In the calculation we need the constants An and % of
Eq. (8) for the different (g,u)-pairs of potentials. A direct
way to determine these constants is to fit potential curves
determined from spectroscopic data, but unfortunately such in-
formation is available for only a few of the needed states,

namely 3ng and 3IIu for N(*s) + ¥(®p) ana 3

z, for N(4S)+ N(ZP)}Q._>
Lacking direct information on the potentials, we turn to quantum-
mechanical calculations. In the next section a calculation of the
potential curves of interest is carried out with the Heitler-
London approximation, and it is shown that the following simple

relations among the energies of different states can be obtained

by the introduction of a reasonable assumption:

_ 3 3 |
2y =%, =3 l 2y =2y | s (18a)
5. _5 _ a3 |3 3 |
M, -"I, | = G- | 1, - n |, (18b)
5 5 _3 |3, 3
8, =8y | =3 ' by =By (18¢)
3

Since only |3H -7, I for the N(4S)+ N(zD) interaction is known

g
from spectroscopic data, we make the following rough approximation

in order to obtain numerical results:

3p -3p
g u

o~

I~

3 3
A~ Au| . (19)

Z,— X

l 3 3
g u




This suffices for the 2D state calculations. For the N(4S)+ N(2P)
interactions we use the potential for the SZu state from ref.,16
and set the potential for the 32g state equal to zero. This,
together with Egs. (18) and (19), suffices for the 2P state cal-
culations.

The results of the calculation are given in Tables I

and II for 10,OOOOK. This is the temperature at which Cin /k

t
for the 2D state is nearly a maximum. Taking these values of

5(1’1) and combining them with the value of 5(2’2) for N atoms,lq

we find pD. ./7 to be 0.54 for the 2

2

D state and 0,30 for the

P state, leading to an increase in )\ by a factor of 1.16. Had we
neglected exchange and assumed the diffusion coefficients of the
excited atoms to be about the same as for ground-state atoms, we

would have obtained pD, ./7m = 1,40, leading to an increase in

int
A by a factor of 1,48,
IV, HEITLER~LONDON INTERACTION POTENTIALS

18 the wave function for a molecular

As shown by Yos,
state between two atoms of the same kind, but originally in
different states, can approximately be written in the form

1
- 0”2
Yg’u(S,MS,L,ML) 2 [TA(S,MS,MLA,MLB)i YB(S,MS,MLB,MLA)] , (20)

where
YA(S,MS,MLA,MLB) =
M. +M, =M
S, 'Sg 'S '
Y. CMg > M_ ;S,MOAY, (M Mg Iy, (M, ,Mg ), (21)
o 5,7 sg S AL, s TP B L T8y

Sp’ " Sp



with a similar expression for V¥,. Here C(M, ,M
B SA SB
Clebsch-Gordan coefficients, which can be readily evaluated in

;S,MS) are the

specific cases from Table 20-5 of Slater,19 wA(MLA,MSA) and
wB'(MLB,MSB) are Hartree-Fock wave functions for the isolated atoms
as described by the indicated quantum numbers, and A is an operator
that antisymmetrizes the product of the partially antisymmetrized
atomic wave functions wA and ¢B' . As these are given as sums

of Slater determinants this operation involves, as mentioned by Yos,
simply a substitution of the product of Slater determinants each of
order N by one Slater determinant of order 2N having the same one-
electron wave functions.

The determination of the atomic wave functions with proper
symmetry is treated for instance in ref.19. The results can be
read from Table All-5 of Slater20 for the cases of interest here:
N(4S), N(2D), and N(2P), all of the configuration p3. Hartree-
Fock solutions for the radial wave functions are available for these
states,21 but we will give here only a formal treatment. This is
sufficient to obtain approximate relations among the different
molecular states, in which we are especially interested. Following

a method which is essentially the same as the LCAO treatment of

the H2+ problem, we obtain from Eq. (20).the result

¢g -9, 2HAB/SAA , (22)

where
HAB = YA HYB dr , (23)

and the overlap integral SAB has been neglected since we are

interested in the results for large interatomic separations.
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It is now easy to show (Appendix B) that the matrix

elements can be written in the form

e T, (24)

Hyp(S:0) =2 (=17 a(S,45 7y TORM;T)

where S and A are quantum numbers for the molecular states. The
summation is over all permutations between all electrons, of which
only the coordinates for the electrons from the unfilled shells
are shown explicitly. 7 is the perturbation number. The spin
factors a and the exchange integrals K are given in Tables III

and IV for molecular states between N(4S) and N(2D). In a first
approximation the summation in Eq.(24) can be restricted to the
terms in which only one pair of electrons from the unfilled

18 If we make the

shells have been exchanged between the atoms.

further restriction that only those terms are retained in which

the electrons which are not exchanged between atoms remain in their

original one-electron orbitals,zz we are able to find simple

relations among different states of the same A. With these restric-

tions we get for N(4S)+ N(2D) only the few terms listed in Table V.
For the terms listed in Table V, a simple proportionality

1 and all K2

exchange integrals are equal for the II states, and all K(2) integrals

among the a's is found for the > states, all K

are equal for the¢ﬁ>states. As a result, we obtain the relations
between different molecular states given in Eqgs. (18).

In the same way it can be shown that the first two
relations of Egs. (18) also hold for the molecular states between

N(%s) and N(2p).
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V. DISCUSSION

Although the lack of information on the potential curves
limits the accuracy of the detailed calculations, we believe that
a few general conclusions are possible, First of all, the
maximum possible contribution of an electronically excited state
to the thermal conductivity is never very large, although it
is not necessarily small. It is probably always less than half
of the translational energy contribution, Hirschfelder23 reached
this conclusion some time ago; our calculations merely supply
additional quantitative evidence. Secondly, the influence of
resonant excitation exchange collisions on the thermal conductivity
is quite important. Our calculations indicate a reduction in xint
by about a factor of three for N atoms at 10,000°K because of
exchange. In short, for many cases of interest the contribution
is probably small but not negligible.

of >‘int
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APPENDIX A, TRANSPORT CROSS SECTIONS WITH EXCHANGE

The differential cross section I(8) for collisions of

the type A*+ A— A + A* involving only one pair of potential curves
has been shown by Massey and Smi1:h24 to be

+ 1 2

I56) =3 | 2,0 + £,(0) * [z (m-6) - £, (m-6)] ) , (A1)
where g and u refer to the gerade and ungerade potentials,
respectively. When more than one pair of potentials is involved,
a simple statistical average of I(9) over all pairs can be used.2
The + sign in Eq. (Al) is used for atoms with total spin even, and

the - sign for atoms with total spin odd. As usual the scattering

amplitudes f(f) are given in terms of the phase shifts N, by

fg’u(e) = (Zik)"1 % 22+ 1) [exp(ZinEg’u)—l] Pﬂ(cos 6). (A2)

If we define diffusion cross sections for hypothetical atoms of

zero nuclear spin as
Ul

+ +
QD_ = 27 J/}l—cos 6)17(©) sin 6d6 , (A3)
8]
then the diffusion cross sections for atoms of nuclear spin s
are
BE|_ |[s+1 t S e
QD( )_ s+ 1T % *lzsyT | %
FD
= 2 (@ +Q)) * L Q- Q) (a4)
2 D D - 2(2s+ 1) D D 7’

depending on whether the atoms follow Bose-Einstein or Fermi-Dirac

statistics. Combining Eqs, (A1) -(A3), we obtain
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T _4rm .2 g_ u
Qp = 2 e%en}(z'”)s1n ‘(”ﬁ ”z+1)
{€odd

4m .2 u g (A5)
+ 2 o%d (£ +1)sin tu - ng+1) .
{even
Similar results hold for the exchange cross section,24
1 3 2
Iex(e) =3 fg(ﬂ—@)-fﬁ(n-a)l , (A6)
9
Qex = 27 IeX(Q) sin 6d6 , (A7)
0
from which follows
- T . 2 g _u
Qux 2 2 (24 +1)sin (nz ul ). (A8)

It is convenient to pass to the semiclassical limit at this
point, in which it is assumed that many phase shifts contribute
to QD and Qex° In particular, the sums over { are replaced by
integrals, and the differences between phase shifts are replaced
by derivatives,
u

?
u g,u _ dnﬂ

g,
Mgel ~ Mg a5 - (49)

It is further assumed that the phase shifts are given suffi-
ciently accurately by the JWKB approximation. This relates the

phase shifts and the classical deflection angles,

6 = 2dn£/d2. (A10)

Taking the impact parameter as bk = (£+ 3), and carrying out

some straightforward manipulations, we obtain

Qex = 21 PeX bdb , (A11)
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where
Pex = sin (ng- uh) ), (A12)
> 3
2 2¢
n-n,} = ¢ = kf [1—(-;3) - —v—g} dr
rg ‘ L 1
” b 2 2¢u
_kf [1—(—) —————il dr , (A13)
r 2
uv

in which r_ and r, are the distances of closest approach
for the Qg and Py potentials. If we take rg =r, =b and carry
out a binomial expansion of the integrands in Eq. (Al3), we

obtain Eq.(7) as the leading term. We also obtain for QD’

after carrying out some trigonometric transformations,

1

BE | _ .
, = QD (class) = 5a7T QD( interfer), (A14)

Q
D(FD

where

+/wu[jl—-2Pex)(l - cos Gu)bdb R (Al15)
o
. ) A .
QD(lnterfer) = 2T Eex(l— Pex{] (sin Qg-51n eu)bdb,
0 (Al6)

and Gg and eu are the classical deflection angles for the @g

and Py potentials. If we take Gg:& eu we obtain Eq. (5).
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APPENDIX B, MOLECULAR WAVE FUNCTIONS FROM N(4S)4-N(2D)

From Eq. (21) and from Table 20-5 of ref.19 we obtain

7 (Mg=1): ¥~ & {V- V40, g0, -H- 3 v, 0, Hugo, ), (B1)

"2 0ig=2): ¥, = Afy,00, Pyg0, b}, (B2)

3 ag=D: v,= &2 3,00, Dy, -bH- 3 v, 0, Hya, b (83)
s™h: ¥y 3 ¥a(0s 2)¥p 2y 4: ’

5n (Mg=2): ¥,= A{‘I’A . 2)1//'(1 %)} (B4)

N oig=D: ¥,= &2 9,0, DHuge, - b1 v, 0, buge, b}, (B5)

N omg=2): v~ & {y,0, Dy, b} . (B6)

The atomic wave functions can now be taken from Table All-5
of ref.20, Using the same notation as ref.20 with the exception
that the spin part has been factored out |e.g., at o™ -1hH =

(aBa)(lO—l)] , we obtain

¥,= A V—(aaa) (OLBB) -(BBOL) “+2(BaB) ]

- \/% [(OLOLB)A + (Baa) , + (aBo) A] [(aaB)B + (apB) B-Z(aBa)]ﬂ}

x (10 - 1)A (10-1)]3 , (B7)
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52: YA= A.bcg (aaa)A Ban)B+(Baa)B—2(aBa9B]

x (10—1)A (10—1)B, (B8)

31 ¥,= A{Veg-(aaa)A(BaB)B-~/;% [ﬁaaﬁ)A+(Baa)A+(aBa)A](GBG)B}

x (10-1) [(100)B - (11—1)B] , (B9)

51'[: ‘I’A= AV;(QCLO’.)A(&BOL)B (10--1)A [(100)B - (11—1)B] R (B10)

SA : Y= A {— l/g (coa) , (afB) g+ l/% [(aocB)A +(Baa) y+(apa) A:I (OLBOL)B}

x (10—1)A (110)B, (B11)

N . ¥,= A&{— (aaa) , (afa) B} (10-1) , (110) . (B12)

The spin factors a and exchange integrals K then follow

from application of Eq. (23).



Table I. Excitation transfer and thermal conductivity

in N?p) + N(%s) at 10,000°K.

AE = 2.38 eV, o= 10/4,

C; /% = 0.900.
(n)
An %n ™ ox
Stat.
States Weight (eV) &1 22y
35 3/40 2320 4.56 12.4
g,u
S5 5/40 6960 4.56 15.0
g,u
3 6/40 2320 4.56 12.4
g,u
o1 10/40 1700 4.56 11.8
g,u
3
A, 6/40 2320 4.56 12.4
SA 10/40 3480 4.56 13.1
g,u
r &0 D 955 82, am/mk = 3.75 + 0.49




C

int

Table II.

Excitation transfer and thermal conductivity
in N®P) + N(*s) at 10,000°k. AE = 3.65 eV, w = 6/4,
/k =

0.372.
[ ()
Stat. An an ﬂQex
States Weight (eV) Q&4 2%
3
3/24 250 2.88 22.8
Zg,u /
5
5/24 750 2.88 27.6
Z‘.g,u /
3
I 6/24 250 .88 22.8
- / 5 2
51 10/24 183 2.88 21.4
g,u
_ 2
D - 46,4 8°; m/mk = 3.75 + 0.11
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Table V. Terms different from zero in the 21

single-exchange approximation

Ty Tg T3 T4 T5 Tg T a(s=1) a (8=2)
> states: 1" 5 6 4 2 3 2 - 1/18 1/6

4 2 6 1 5 3 2 - 4/18 4/6

4 5 3 1 2 6 2 - 1/18 1/6

II states: K3 and K4 yield no terms in this approximation.

K

1 1/8 _ 0

—\/3/8
_\/3/8 0

1/8 1/2

o = R Sy
N OO
o

1/8 1/2
~V3/8
-V3/8

1/8

Hobh o 00NN
© O O

O

7/12
0
0
1/12

A states:

[ &) I S S I - N ST N
S O M

[o2 I o > I« )R o >} N N NN (o2 NN 4) |
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S T % L
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